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Executive Summary | Current Limitations

While autonomous underwater platforms are certainly
advancing and embracing AI engines, the journey towards
complete autonomy is far from complete. Current technical
limitations and capabilities pose challenges that must be
addressed taking a holistic approach.

High costs to obtain labeled data
AI systems require hundreds of TBs of data for task execution. Acquiring and
labeling this data is costly and time-consuming, with image labeling
averaging $2.50/image and potentially hundreds of thousands of images
needed to enhance capabilities. Moreover, collecting and using SONAR data
more applicable to underwater environments is difficult and the state of the
art has not identified approaches to overcome severe limitations such as
overdrifting, noise, and the presence of shadows.

Need a minimum investment of

to update training data applicable to
underwater environments, namely
label image data, which does not
take into account the cost of
collecting this data and leveraging
more applicable data (e.g. SONAR) in
the first place.

$5M - $10M

To advance the current best-
performing state of the art platforms
to a fully autonomous platform,
according to experts interviewed by
PreScouter.

$100M
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Executive Summary | Overcoming Challenges

Two key gaps are addressing 
"noisy" data and boosting 
latencies by 30X.

Navigating AI challenges in aquatic 
environments

Water interferes with electromagnetic wave propagation, leading to
signal disruption. It's essential to improve communication protocols,
boost bandwidth, reduce latency to less than 10 ms (compared to
300-400 ms in autonomous cars), and ensure signal robustness for
efficient communication among different entities.

Bridging architectural and latency hurdles

High-level autonomous systems need to manage data with
significant noise and uncertainty. Hence, there's a pressing need to
enhance system latencies by 30x.

1. Trillions of operations per second - a key metric to measure chip performance; 2. Based on EdgeCortix Sakura1 performance. Source.; 
3. Technology readiness level; 4. Valencian Research Institute for Artificial Intelligence. Source.

https://www.hindawi.com/journals/misy/2016/6574697/
https://www.edgecortix.com/en/blog/efficient-edge-ai-chips-with-reconfigurable-accelerators
https://www.sciencedirect.com/science/article/pii/S0736585320301842
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Executive Summary | Architectural Advancements

Continuous advancements 
in hardware will boost the 
processing capabilities of 
underwater AI engines.

Better performing autonomous architectures 
and edge computing are crucial

Achieving 1000 TOPS1 for full autonomy necessitates 25 top-tier edge
computing chips in a unified architecture. Addressing computational
hardware concerns is vital for real-time data processing. This requires
improved sensor tech and adoption of tools like FPGAs. Merging deep
learning with SONAR and integrating edge computing can overcome
latency issues and maximize platform potential.

Full autonomy is still elusive

To achieve continuous autonomy, models need a minimum of 7 TRLs
improvement. Despite advances like YOLO v5 and Mask R-CNN, and
methods like NASA's Jet Propulsion Lab's Model-Driven Engineering
and domain-specific languages (DSLs), achieving real-world full
autonomy demands a 7 TRLs leap, as per VRAIN's analysis.

1. Trillions of operations per second - a key metric to measure chip performance; 2. Based on EdgeCortix Sakura1 performance. Source.; 
3. Technology readiness level; 4. Valencian Research Institute for Artificial Intelligence. Source.

To achieve continuous autonomy, models 
need a minimum of 7 TRLs improvement. 
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https://www.edgecortix.com/en/blog/efficient-edge-ai-chips-with-reconfigurable-accelerators
https://www.sciencedirect.com/science/article/pii/S0736585320301842
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Executive Summary | Patent Landscape

Progress in achieving autonomy for underwater platforms is still in its nascent stages, though 
these gaps are being addressed by leading players globally. In order to meet the needs of 
commercial and defense entities around the world and reach full autonomy, further R&D is 
required and key players like NVIDIA are already focusing their attention on this need.

A 10x increase in patent applications for 
underwater autonomy/AI in the last 7 years 

Underwater autonomy is on the rise, as indicated by our
IP analysis. This expansion of the IP domain includes
diverse applications like surveillance, unmanned
vehicles, and advanced sensors. Advancements in
specialized chips and neural networks are key for
achieving autonomy.
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The path forward: the next 5 years

Autonomous Launch & Docking
• Increasing focus on autonomous 

launch and docking capabilities.
• Expected to significantly reduce 

operational costs.

Engine Evolution
• Limited potential for new 

developments in electrical engines.

Cloud-Enabled Communication
• Enabling AUVs to communicate 

with surface vehicles.
• Accessing cloud resources for 

enhanced data collection.
• Reducing the need for direct 

UUV-to-cloud connections.

Cybersecurity Emphasis
• Anticipating increased attention 

to UUV cybersecurity.
• An upcoming area of disruption 

in the industry.

Underwater 
Autonomous 

Platforms 
Developments 

AI enhancements
• Focus on enhancing AI algorithms, 

particularly for sensors.

Executive Summary | Expert Forecast
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DIVE DEEPER: In this Intelligence Brief, we offer insights into artificial engines applicable to underwater platform
autonomy. We explore limitations, tools, examples, and data enhancement. Additionally, we identify overarching trends
in robotics and autonomy R&D, emphasizing the potential contributions of autonomous underwater platforms across
various industries, including the military sector.

What’s covered in this report

Recognize limits and needs for 
underwater vehicle AI autonomy.

Highlight tools and datasets for 
functional AI engine development.

Showcase tangible real-world 
advancements in this domain.

TOWARDS AUTONOMY
Strategies to create or enhance 
datasets for vital AI engine 
autonomy functions.
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Limitations and requirements for AI engines.

Current tools and data sets to support the 
development and training of a functional AI engine.
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Ways to develop new data sets or augment existing 
ones to enable autonomy of AI engines

01

02

03

04

05



LIMITATIONS AND REQUIREMENTS
Recognizing the limits and needs for 
underwater vehicle AI autonomy.
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Strategy for developing a fully 
autonomous underwater platform

HIGH-LEVEL 
CONTROL UNIT

LOW-LEVEL 
CONTROL UNIT

Sensor Data 
Collection

DECISION-MAKING 
MODEL

• Decision-making
• Navigation
• Task execution
• Optimization of mission 

objectives 
• Communication with other 

autonomous platforms
• Manages the autonomous 

platform motor
• Provides physical 

movements
• Executes the commands 

received from the high-level 
control unit

• Interprets the analyzed data
• Makes informed decisions about 

the autonomous platform actions 
(course of action, avoid obstacles, 
follow a route)

• Collected information analysis 
and processing using AI 
algorithms.

• Algorithms extract insights and 
make sense of raw sensor data

• Gathers information from 
sensors (SONAR, radar/Lidar, 
cameras, etc.)

• Provides data about the 
autonomous platform 
surroundings.

Figure. This diagram outlines the key components for achieving autonomous underwater operation with
AI and sensor data. It includes High-Level Control, Low-Level Control, Sensor Data Collection, Data
Processing, and a feedback loop for real-time adjustments. Source: Anonymous SMEs

Data 
Processing

• Leverage and augment existing platforms instead of starting 
from scratch to minimize investment and time required (using 
this approach will require an estimated $100M in R&D costs, 
according to PreScouter experts)

• This is a complex effort that will require a company or group of 
stakeholders with expertise in numerous technical areas, 
including 

o navigation accuracy

o dealing with water drift

o sensor integration

o electrical integration

o AI and software integration

o resolving mechanical issues

• Work with or recruit SONAR experts, due to lack of SONAR data 
for training

• Collect/simulate SONAR data for the geographies and 
environments in which your platform will be expected to operate 
autonomously, as data for underwater environments in Europe 
will look different from those in the Americas or Asia. 



Limitations found during the development 
of Autonomous Underwater Platforms

Lack of Data Complexity Cost Time
Training AI engines for complex 
tasks like object detection takes 
time due to the need for 
extensive data. In underwater 
environments, data collection 
challenges arise due to harsh 
conditions introducing noise 
and interference.

Implementing AI engines, 
particularly with limited 
computing and cloud access 
is complex. Sensor data 
handling and processing 
remain as the most complex 
unresolved tasks to achieve.

Developing and deploying AI 
engines is expensive cost 
includes R&D, specialized 
hardware and sensor 
components, communication 
equipments, power sources, etc.).

Training AI engines for complex 
tasks takes time due to the 
need for extensive data. In 
underwater environments, data 
collection challenges arise due 
to harsh conditions.

?



Limitations found during the development 
of Autonomous Underwater Platforms

Labeled vs 
unlabeled Data

Environmental 
heterogeneity

Different sensor 
requiring ML processing

Number of 
Stakeholders

Training AI with labeled data 
(correctly tagged) is costly; 
using unlabeled data requires 
implicit output identification. 
Current efforts are addressing 
via unsupervised data 
processing.

AUVs operate in diverse 
environments, making training AI 
engines to perform well across 
all conditions challenging. The 
heterogeneity varies with the 
purpose of use, type of 
environment (e.g., freshwater, 
marine environments, depths).

AUVs use various sensors 
(cameras, sonar, radar), 
complicating AI training for 
effective multi-sensor 
utilization and logical 
coordination and 
interpretation by AI engines.

AUV autonomy involves varied 
stakeholders, hindering AI 
consensus. Limited 
collaboration among Research 
Institutions, industry partners, 
engineering, and design experts 
adds complexity.
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The progress of autonomous underwater platforms faces long-term developmental limitations.

Short-term
Mid-term

Long-term

Underwater sensors are limited in range, resolution, 
and visibility, and need to deal with high noise/ 
uncertainty levels, which makes it difficult for AI 
systems to process and interpret data.

Communication protocols must enhance 
bandwidth, reduce latency, and bolster signal 
robustness for underwater autonomy.

Deep learning needs labeled data, which is 
challenging and time-consuming to gather.

Enhancing underwater mapping using 
diverse sensor methods and innovative 
strategies can enable real-time spatial 
awareness updates for AI navigation.

AI must adapt to real-time decisions to navigate 
underwater obstacles, complex terrain, and varied 
environmental conditions (currents, temperature, 
pressure, visibility).

Maintaining AI systems for prolonged periods in remote 
underwater locations presents intricate engineering 
challenges for ensuring reliability and upkeep.

Design AI systems which can adapt and learn to 
previously unexplored or rapidly changing environments.

EXPECTED 
CAPABILITIES

Systems grasp object and event 
connections in space and time.

Systems enabled to select actions 
using machine learning to improve 
decision making.

Computer vision algorithms predict 
real-time future actions and 
locations from past behavior.

Multi-agent systems can be used to 
coordinate the actions of large numbers 
of agents to solve complex problems.

Systems learn and adapt in real time, 
forming hypotheses about the world 
and refining their models.

Systems reason across extended periods of 
time spanning years. It will require more 
abstract reasoning capabilities.

ROADBLOCKS

Autonomy 
perception

Decision 
making
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Control AI engine Processing

Navigation Mapping Algorithms Use of sensor data

Object Detection Computer Vision (CNNs) Locate common objects

Classification ML Algorithms Categorize common objects

Mapping Data Processing Algorithms Data & create 2D-3D maps

Path Planning Optimization Algorithm Optimize routes

CURRENT 
FUNCTIONALITIES

Control Capability GAPS

Situational 
Awareness

Merge detected objects
Time synchronization
Integrate sensors data

Auto detect & identify surface and 
underwater targets

Dependable 
Performance

Train recognition models
Improved device reliability

Anomaly prediction, Self-diagnosis, 
Troubleshooting, Functional continuity.

Navigation Limited communication rerouting 
Detect underwater objects
Adapt to environment

Self Route Set, Avoidance, Autoship
Steering, Self position estimation.

Mission Balance control algorithm
Learning from events
Collaboration/Mission execution

Attitude Control & estimation, Action 
assessment, Decision-making, 
Collaborative control.

EXPECTED
FUNCTIONALITIES

FULLY AUTONOMOUS 
PLATFORM

OUTCOME: Enables autonomous decision making on-the-fly to reach 
overall objectives, determines self-response for issue prevention & 
handling, allowing extended missions with no human intervention.

Identifying gaps in achieving underwater platforms autonomy
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Current state of the art in achieving underwater autonomy

Figure. Analysis of the elements required to achieve underwater autonomy based in
their current state of the art, functionalities, cost, and technology readiness level (TRL).

Path planning 
& Navigation

Mapping

Multi-Platform 
Coordination

Full autonomy

Obstacle 
avoidance

Achieving simple, 
defined mission 

objectives

Object 
detection

Adaptability in 
unknown 

environments
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The TRLs show that various 
technological aspects of underwater 
platform development have 
progressed from conceptual stages 
(TRL 3) through component 
validations (TRL 4) and the creation 
of functional prototypes (TRL 6 and 
7). TRL 7, denoting operational testing, 
marks significant progress towards 
practical application. However, the 
SME analysis, considering the time 
and costs required to achieve full 
autonomy in terms of accuracy and 
resolution, suggests that we still have 
a considerable distance to go.
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Full autonomy is currently limited by latency, processing power, and 
autonomous architectural limits

Progressing from recognition to cognition to
judgment and control necessitates the
collection of data from sensors, the
transmission of this data to processing centers
via interfaces (buses), and subsequently
sending it to actuators and other low-level
control mechanisms through separate
interfaces. With each step having distinct
latencies, these cumulative delays contribute
to an overall latency requirement that can
pose challenges for AUVs in making real-time
decisions. Experts assess millisecond latency
requirements for sensor data collection and
processing, and second latency requirements
for high level controls and communications.

Communication

Latency
Processing

Interpretation

Autonomous platforms must be able to
process large amounts of data, communicate
with other devices, and connect to
communication networks. Higher level control
functionalities will require more complex
autonomous architectures that will require
even more processing power. Each hour of
mission will require collecting and processing 1
gigabyte (GB) of data from synthetic aperture
sonar sensors alone, and about 20 GB for all
sensors from state of the art platforms
available today.

The dynamic behaviour varies with
payload, requiring the motion controller to
adapt. Thrusters have slow dynamics and
control rates.

Underwater platforms often operate in
areas with no communication networks,
and are unable to take advantage of
cloud computing services.

Interpretation is limited by processing 
power and autonomous architectures.

As a reference point, in EVs today, the 
computing power required for each level of 
self-driving vehicle is generally held to be as 
follows: less than 10 TOPS for L2, 30 to 60 TOPS 
for L3, more than 100 TOPS for L4, and 
predictions of around 1,000 TOPS for L5. Existing 
platforms are only capable of meeting some 
requirements of L3 and L4 autonomy. Source.

Communication will not be essential for 
fully autonomous platforms, except when 
coordinating among multiple platforms.

https://www.huawei.com/en/huaweitech/publication/86/driverless-vehicles-with-mdc#:~:text=The%20computing%20power%20required%20for,of%20L3%20and%20L4%20automation.
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Identifying latency requirements depends on autonomous functional and 
physical architectural choices

Autonomous architecture from MIT, though defined for an autonomous car, illustrates how to determine latency requirements for any 
autonomous platform. 
• The influence between functional and architectural choices is also highlighted and helps illustrate the need for computational resources.

• Without the need for safety required for autonomous vehicles, current latency achievable in platforms stands at ~320ms.

Figure 1. Example of a functional architecture for an autonomous
platform (blue tasks are degeneracy equivalents of some yellows tasks)
to improve safety through redundancy. Source: MIT

Figure 2. Link between functional and physical
architecture choices. Source: MIT

Figure 3. Example of latency calculations for two different
architectures. The latency is calculated for the path between Sensor 1
and Actuator 1 in both cases. Adding a bus adds latency to the
message going from task T1 to T3. To ease the notation in the figure,
messages are here designated with their own index, as opposed to
the tasks they are linking, in the equations above; m3 would be
designated as T1T3 in the provided latency formula. Source: MIT

https://dspace.mit.edu/bitstream/handle/1721.1/140484/10.1002-sys.21528.pdf?sequence=1&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/140484/10.1002-sys.21528.pdf?sequence=1&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/140484/10.1002-sys.21528.pdf?sequence=1&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/140484/10.1002-sys.21528.pdf?sequence=1&isAllowed=y


Cloud computing is not a realistic option for underwater platforms, especially 
if you're not planning to use expensive wideband satellite communication. The 
key to effective processing is edge computation, and it's essential to have the 
necessary hardware onboard.

Today, technologies like GPUs, such as NVIDIA's GPUs, or even more powerful 
hardware like the A100 GPU, are the types of hardware you need to handle 
the significant volume of data processing required in real-time 
underwater scenarios. Without this kind of dedicated hardware, attempting 
to process such data externally or in the cloud is not a viable solution.

Anonymous Interviewed Expert

Expert Insight
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Presently, achieving underwater autonomy relies on internet and cloud connections. Edge 
computing could remove this necessity, advancing us toward complete underwater autonomy.

Edge computing is anticipated to supplant cloud-based 
DL computation, providing distributed, low-latency, 
dependable intelligent services.

Autonomous underwater platforms can represent model 
systems designed to overcome latency challenges by 
using edge computing in an IoT gateway.1-2

A Python-based algorithm was developed to communicate 
autonomously with underwater sensors, actuators, and 
controller, and the cloud computer vision APIs

The system is effective and features the asset of combining 
an AUV with deep learning cloud services for processing 
and analyzing photos.

EDGE 
COMPUTING

A hybrid cloud/edge architecture is recommended to 
ensure a real-time control loop and achieve consistent 
results today.

Figure. The physical layer is constituted by a variety of electronic devices
interconnected by three different networks according to their functionality: the CAN
(controller area network), the Ethernet network and Internet/cloud network. The CAN
network is composed of four slave nodes and one master. Each node consists of an
electronic card specifically designed for this vehicle and its assigned tasks, and has as
a core a PIC18F4685 microcontroller, working at a frequency of 25 MHz. The AUV
operated at 200 m depth. Source: Salhaoui et al. 2020.

* Deep Learning

https://www.mdpi.com/2072-4292/12/12/1981
https://link.springer.com/article/10.1007/s11276-022-02971-5
https://www.mdpi.com/2072-4292/12/12/1981
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Comparing hardware platforms able to support autonomy of underwater platforms.
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Performance & Power Efficiency

24 TOPS/WATTS

Up to 196x compared to 
normalized CPU values

CPUs are flexible but inefficient, 
require additional operations for 
each useful algorithm operation, 
which slows down computation 
and increases power 
consumption

GPUs are faster for parallel 
tasks, but CPUs are more 
versatile.

FPGAs are reprogrammable chips, 
more efficient and powerful than 
CPUs and GPUs. Ideal for 
applications where performance 
and flexibility are critical.

ASICs are specialized chips 
that are very efficient for a 
specific problem, but 
expensive and limited in use.

Control CPU GPU FPGA

Input Processing 1 1.79× 1.41×

Image Arithmetic 1 3.19× 2.93×

Image Filters 1 3.17× 3.89×

Image Analysis 1 2.34× 5.67×

Geometric Transform 1 10.3× 16.6×

Features/ OF/ StereoBM 1 7.44× 22.3×

Table. The energy/frame reduction ratio (how much energy can
be saved per frame when using a hardware accelerator instead
of a CPU). A higher ratio means that the hardware accelerator is
more efficient and can save more energy. Source

Figure. Comparing hardware platforms for AUVs defined by their flexibility and ease of use vs performance and power efficiency. CPU: Central processing
unit. GPU: Graphics processing unit. FPGA: Field-programmable gate array. ASIC: Application-specific integrated circuit. Source: Siek et al. 2023.

ASICs

https://cset.georgetown.edu/wp-content/uploads/AI-Chips%E2%80%94What-They-Are-and-Why-They-Matter.pdf
https://arxiv.org/pdf/1906.11879#:~:text=Our%20results%20show%20that%20the,ratios%20of%201.2%E2%80%9322.3%C3%97.
https://www.extrica.com/article/22048
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Relevant FPGA developments

Capable of real-time data 
processing, ideal for time-sensitive 
applications.

Applied in signal processing, 
video/audio equipment, and 
data transfer. 

In AI, their flexibility and 
performance-to-power ratio 
suit dynamic applications.

Intricate development; it requires 
deep digital logic understanding due 
to hardware-level programmability.

FPGAs

Limited machine learning 
libraries for FPGAs complicate 
FPGA-based AI development.

Source: Intel

PROS

CONS

Fuzzy PID algorithms ensure controlled yields, enhancing 
further the accuracy and reduced response time.

https://www.intel.com/content/www/us/en/products/details/fpga/agilex.html
https://philjournalsci.dost.gov.ph/images/pdf/pjs_pdf/vol152no3/PID-FUZZY_control_system_for_autonomous_underwater_vehicles_.pdf
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Relevant SoM developments

A system-on-a-module (SoM) that 
includes a GPU, CPU, and other 
peripherals.

A small, powerful AI computer that 
can be used to run deep learning 
models on underwater platforms.

Can specifically be used to:
• Identify target objects to perform 

manipulative operations, 
• Create a segmentation network, 

and 
• Design and implement the 

control system.

NVIDIA 
JETSON 
XAVIER 
SERIES

NX and AGX are the more powerful 
platforms that can run complex 3D 
object detection algorithms. 

Table 1. Specification of four NVIDIA Jetson platforms. NX and AGX are the more powerful
platforms. Source: MDPI

The Tensor RT library can significantly improve the performance 
of 3D object detection algorithms on Jetson platforms. 
Tensor RT automatically tunes the functions of deep neural 
networks, which can lead to significant speedups.

https://www.mdpi.com/1424-8220/23/8/4005
https://www.mdpi.com/1424-8220/23/8/4005
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Relevant System-on-Chip (SoC) developments

The Myriad X can be used to detect objects in 
real time, image classification, and natural 
language processing.
Based on the Intel Vision Processing Unit 
(VPU) architecture and is manufactured 
using a 28nm process. 
The Myriad X has a neural processing unit 
(NPU) that can process up to 10 TOPS, and 
runs on as little as 1 watt of power.

System-on-a-chip 
(SoC) designed for 

embedded vision 
applications.

WSE-2 powers Cerebras CS-2 with 2.6 trillion
transistors, and 850,000 AI-optimized cores.
Equipped with 40GB on-chip SRAM, evenly 
distributed for single-clock-cycle access. 
Outperforms GPUs with 1,000x capacity and 
9,800x bandwidth increase.
WSE-2's on-wafer interconnect delivers 220 
Pb/s bandwidth, erasing communication 
bottlenecks. Faster, energy-efficient deep 
learning compared to GPU clusters.

Figure 1. Movidius Myriad X VPU: Real-time DNN
inferencing with 1 TOPS performance and 700Mpps
image signal processing. Source: Myriad.

Figure 2. Cerebras WSE-2 is a 46,225mm² Silicon, with 2.6 Trillion
transistors, compared to the largest GPU GPU, a 826mm² Silicon
with 54.2 Billion transistors. Source: Cerebras.

https://www.intel.com/content/www/us/en/products/docs/processors/movidius-vpu/myriad-x-product-brief.html
https://www.cerebras.net/product-chip/
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/myriad-x-product-brief.pdf
https://www.cerebras.net/product-chip/
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Relevant Si photonic technologies

SiN platform for silicon photonics that can be easily 
integrated onto SOI wafers.
Si Photonics foundries offer high bandwidths, low power 
consumption, and robustness to harsh environments, 
which is required by Autonomous Underwater Platforms.

The Lumentum GaAs 53 Gbaud PAM4 driver IC is a high-
performance driver that is optimized for PAM4 modulation, 
suited for applications that require high bandwidth and low 
inter-channel cross-talk.

Lightmatter has produced ‘The Passage’, a processing tower 
which works with a universal silicon layer that contains 
lasers, optical modulators, photodetectors, waveguides, as
well as classical transistors to accompany the logic. 

Feature Value
Bandwidth 53 Gbaud
Modulation PAM4
Output voltage Optimized for silicon and InP MZMs
TDECQ Exceptional
Gain range 6 dB
Channel pitch 625- or 700-um
Inter-channel crosstalk penalty 4 dB better with 700-um pitch

40X waveguides
in the space of 
one optical fiber.

Table 1. Process Design Kit specs. Source: AMF

Table 2. Specs for Driver for Silicon Photonics MZ Modulator to 56 Gbau. Source: LUMENTUM

Lightmatter Passage brings Co-Packaged Optics and Silicon Photonics to the Chiplet Era. Source:
Lightmatter

100X more bandwidth, 
and <2NS Chiplet to 
chiplet latency, single 
hop connectivity between 
every site.

800 + TPS Input/output 
bandwidth from each 
chiplet site for full reticle. 
And up to 250+ Tbps per 
chiplet site edge.

https://www.advmf.com/technology/
https://www.lumentum.com/en/products/driver-silicon-photonics-mz-modulator-56-gbaud
https://lightmatter.co/products/passage/
https://www.advmf.com/wp-content/uploads/2023/05/AMF-Brochure-2023-web.pdf
https://www.lumentum.com/en/products/driver-silicon-photonics-mz-modulator-56-gbaud
https://www.servethehome.com/lightmatter-passage-brings-co-packaged-optics-and-silicon-photonics-to-the-chiplet-era/


TOOLS AND DATASETS
Highlighting tools and datasets for 
functional AI engine development.



The relevant AI engine for underwater applications is not specifically 
designed for the underwater environment. Instead, we can use models that 
are already available for over-the-water applications and adapt them to the 
underwater environment using transfer learning. 

This is because developing complex and powerful AI networks is a very 
expensive and time-consuming process, and most of the resources are 
focused on making them work above the water. By using transfer learning, 
we can save time and money while still developing an AI engine that is 
effective in the underwater environment.

Dr. Marco Leonardi
Performance Analysis 
Engineer, ARM

Expert Insight



Models developed in 
academia & industry 
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High-level control systems are responsible for the overall planning and execution of tasks.

Application Description Examples of applicability Website

Robot Operating 
System (ROS)

A software development kit that provides a 
common platform for developing and 
deploying robot applications

• Design and implementation of AUV.
• Optimizing the positioning and capturing of AUV recycling 

system.
• Multi-Platform Obstacle Avoidance System for AUV.

ROS

Mission Oriented 
Operating Suite -
Interval Programming 
(MOOS-IvP)

MOOS-IvP is a set of open source C++ 
modules for providing autonomy on robotic 
platforms, in particular autonomous marine 
vehicles.

• Autonomous control of autonomous underwater vehicle 
servicing platform.

• An Autonomous Underwater Vehicle Dual Driver System.
• Autonomous underwater acoustic localization through 

multiple unmanned surface vehicle.

MOOS-IvP

You Only Look Once 
(YOLO) v5.

YOLOv5 is a real-time object detection 
model that is applicable for 
recommendation systems and for 
standalone process management and 
human input reduction.

• Underwater animal detection.
• Real-time sea cucumber detection.
• Vision-based Deep Learning algorithm for Underwater Object 

Detection and Tracking.

YOLO v5

Single Shot MultiBox
Detector (SSD)

An object detection platform that is known 
for its speed and accuracy. It can detect 
objects in a single pass through the image.

• Underwater Object Detection Based on Improved SSD with 
Convolutional Block Attention.

SSD

https://www.ros.org/
https://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php
https://docs.ultralytics.com/models/yolov4/
https://arxiv.org/abs/1512.02325
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Advantages of YOLO v5 in Object Detection

A one-stage detector that achieves higher accuracy and 
is faster than two-stage networks.

Uses improved CSP DarkNet 53 as the backbone, SPPF 
instead of SPP, FPN and PANet to combine features at 
different scales, and C IOU loss as the loss function of the 
bounding box.

YOLO v5 is introduced as the basic Convolutional Neural 
Networks 

The structure of YOLO v5 is optimized to improve the 
performance of the detector for sonar images. 

The system achieves a 1–3% increment of mAP which can 
be up to 80.2% with an average speed of 0.025 s (40 FPS) 
in the embedded device. 

The system has been verified and performs well both in 
the school tank and outdoor open water environments. 
Other advantages include the fact that it performs well 
and meets the requirements of real time and light weight 
using limited hardware, though the system still faces 
difficulties when applied to real world underwater 
scenarios.

YOLOv5 structure. The system is designed to be real-time, lightweight, and accurate. The
proposed methods try to balance these three factors, but there are still some challenges.
Research on model slimming, quantification, and distilling should be put forward to further
improve the system. Source: Chen & Chen 2023

https://doi.org/10.3390/jmse11050989
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Control Models: Fuzzy Control, Neural Network Control, and Reinforcement Learning 

AI platform 
Control System Performance Efficiency Ease of 

Implementation Strengths Weakness

Fuzzy Control Medium Low Medium
Robust to 

uncertainty and easy 
to understand 

Not as accurate as 
other platforms, 
requires human 

expertise

Neural Network 
Control High Medium Medium/High

Accurate, can be 
used for complex 

systems

More difficult to 
understand and 

implement in 
complex systems

Reinforcement 
Learning High High Low

Learn from 
experience, can be 
used for complex 

systems

More difficult to 
implement, can be 

slow to learn

Table. Comparison of Control Models for AI Platform in Terms of Control Performance, Efficiency, Implementation Ease, Strengths, and Weaknesses
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Algorithm Class Improvement Control object Control effect References

Fuzzy control
Fuzzy 
Proportional 
Integral 
Derivative (PID)

Self-organizing fuzzy sliding 
mode control law

Path-following control of 
AUVs.

Track reference trajectories 
with a high degree of 
accuracy and robustness.

Taylor & Francis 
Online

Possibilistic fuzzy C-means 
algorithm to diagnose 
thruster faults, and a fuzzy 
control strategy to recover 
from thruster faults.

Thruster fault diagnosis and 
fault tolerant control in AUVs

Fuzzy control strategy is 
improved by considering 
the uncertainty of ocean 
currents.

Mdpi

Fault-tolerant control 
scheme

Find the optimal relationship 
between the linear extended 
states observer's parameters 
and tracking errors.

Estimate the fault, and the 
saturated sliding mode 
controller is used to ensure 
the stability of the system

IET research 
Online Library 
Wiley

Fuzzy control is a good AI platform for systems where robustness to uncertainty and 
ease of understanding and implementation are more important than accuracy.

https://www.tandfonline.com/doi/abs/10.1080/20464177.2022.2120448
https://www.mdpi.com/2075-1702/10/7/582
https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/cth2.12288
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Neural network control is a good choice for accurate systems, but it can be more 
complex than other platforms.

Algorithm Class Improvement Control object Control effect References

Neural network 
control

Adaptive 
neural network

Lyapunov stability theorem 
and graph theory

Containment control Effective containment control 
for multiple AUVs under time-
varying constraints.

Science Direct

Filtered technique A visual docking controller for 
underactuated 

Yaw and pitch angles, and a 
barrier

Online Library 
Wiley

Saturated PID-type Feedback-linearizing 
controller

Compensates NLIP 
uncertainties and 
disturbances.

Science Direct

Neural network-based 
disturbance

Finite-time tracking error 
based on the dynamic sliding 
surface.

Adaptive observer-based 
dynamic sliding mode 
control for underwater 
vehicle.

Science Direct

Online neural 
network 
controller

Dynamic Neural Control 
System

Compensate for unknown 
dynamics and external 
disturbances,

Track reference trajectories 
more accurately than a 
conventional feedback 
controller with no adaptive 
compensation.

Mdpi

Proportional-Integral-
Derivative control

Control strategy, but it 
requires the setting of control 
parameters.

Using the firefly algorithm to 
better control AUV motion.

IEEE xplore

Hybrid control

Fractional sliding mode 
control and a compound 
control method.

Eliminates the chattering 
phenomenon without 
sacrificing the robustness of 
FSMC.

Robust against external 
disturbances.

Taylor & Francis 
Online

https://www.sciencedirect.com/science/article/abs/pii/S0925231221015800
https://onlinelibrary.wiley.com/doi/abs/10.1002/rnc.6051
https://www.sciencedirect.com/science/article/abs/pii/S0029801822011714
https://www.sciencedirect.com/science/article/abs/pii/S0029801823002664
https://www.mdpi.com/2076-3417/11/6/2797
https://ieeexplore.ieee.org/abstract/document/9389461
https://www.tandfonline.com/doi/abs/10.1080/00207179.2020.1749938
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Reinforcement learning is a powerful AI platform that can be used to train agents to 
perform complex tasks in dynamic environments. 

Algorithm Class Improvement Control object Control effect References

Reinforcement 
Learning

Reinforcement 
learning

Designed the reward function Precise trajectory tracking. The thrusters were 11.14% less 
solicited by the latter 
controller.

IEEE xplore

Deep 
reinforcement 
learning

A reward function for deep RL Improve AUV trajectory 
tracking precise.

Effectively improve reliability 
and stability, reduce energy 
consumption, and restrain 
the vectored thruster sudden 
change.

Hindawi

Interactive 
reinforcement 
learning

Learns from both human 
rewards and environmental 
rewards at the same time

Improve rewards and learning 
efficiency.

AUV can converge faster 
than a DQN learner from only 
environmental reward.

ARXIV

Reinforcement 
learning

hybrid behavior coordination 
and SONQL to learn behavior 
state/action mapping

High-level control of 
autonomous underwater 
vehicles

Advantages using a 
competitive and cooperative 
behavior coordination, while 
SONQL is a new continuous 
approach to Q-learning that 
uses a multilayer neural 
network.

IEEE xplore

https://ieeexplore.ieee.org/document/9389415
https://www.hindawi.com/journals/complexity/2021/6649625/
https://arxiv.org/abs/2001.03359
https://ieeexplore.ieee.org/abstract/document/1522520


Models developed by the 
NASA Jet Propulsion Lab
These models are designed to function in extreme 
environments with limited connectivity, finding high 
applicability to underwater scenarios
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NeBula is the latest modular software framework that enables robots to autonomously 
explore unknown and challenging environments under uncertainty.

NeBula (Networked Belief-Aware Perceptual Autonomy) is one of the most recent NASA Jet
Propulsion Laboratory development. NeBula has the potential to achieve the following features:

Verifiable autonomy under extreme conditions: NeBula develops an autonomy architecture
that translates the mission specifications into single- or multi-platforms behaviors. It quantifies
risk and trust by taking uncertainty in platform motion, control, sensing, and environment into
account.

Modularity and mobility-based adaptation: NeBula focuses on a modular design to enable
adaptation to various mobility platforms and computational capacities.

Resilient navigation: NeBula develops a GPS-free navigation solution resilient to perceptually-
challenging conditions. It relies on degeneracy-aware fusion of various sensing modalities,
including vision, IMU, lidar, radar, contact sensors, and ranging systems.

Single- and multi-robot SLAM and dense 3D mapping: NeBula develops GPS-denied large-
scale SLAM solvers and 3D mapping frameworks using confidence-rich mapping methods. It
provides precise topological, semantic-based, and geometrical maps of extreme environments.

Extreme traversability: NeBula develops solutions that have enabled robots to autonomously
traverse extreme terrains. It can handle loose and slippery surfaces, muddy terrains, rock-laden
terrains, high-slope areas, and stairs.

Multi-platform operations and mesh communication: NeBula can be implemented on multi-
robot systems to enable faster and more efficient missions. It can also create a wireless mesh
network backbone using static radios.

Autonomous skill learning: NeBula applies and extends reinforcement learning and machine
learning methods to enable fast and safe robot motions in perceptually-degraded
environments.

NeBula is a promising new technology that has the
potential to revolutionize the way we explore extreme
environments. It is a powerful tool that can help robots to
safely and efficiently navigate through unknown and
dangerous terrain. Source: NASA Jet Prop Lab.

https://costar.jpl.nasa.gov/
https://costar.jpl.nasa.gov/
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Model-driven engineering and domain-specific languages (DSLs) proven useful in the 
development of complex systems with extensive applicabilities

Application Description Examples of applicability Website

CARACaS (Control 
Architecture for Robotic 
Agent Command and 
Sensing)

CARACaS is an architectural pattern developed at 
NASA in 2011 for control of autonomous underwater 
vehicles (AUV) and autonomous surface vehicles 
(ASV).

• Control Architecture for Robotic Agent Command and 
Sensing.

CARACaS

CLARAty (Coupled Layer 
Architecture for Robotic 
Autonomy)

CLARAty is a modular and adaptable architecture 
developed at NASA, and has been used in a variety of 
applications, including planetary surface-exploration 
rovers, underwater vehicles, and search and rescue 
robots.

• The CLARAty architecture for robotic autonomy.
• Claraty: A collaborative software for advancing robotic 

technologies.
• Improved CLARAty Functional-Layer/Decision-Layer Interface.

CLARAty

CASPER (Continuous 
Activity Scheduling 
Planning Execution and 
Replanning)

CASPER is a system that enables fast and continuous 
planning designed for spacecrafts. This makes it 
possible to control the vehicle in real time, even in 
remote and dangerous environments.

• Casper: Space exploration through continuous planning.
• Autonomous planning and scheduling on the TechSat 21 

mission.
• Using Iterative Repair to Improve the Responsiveness of 

Planning and Scheduling.

CASPER

Onboard autonomy,
Multi-rover 
coordination, and 
Planning, Scheduling 
and Execution.

Robots need to explore unknown areas in real time 
and avoid obstacles, without loosing their 
communication systems. Within the system robots 
need to be able to communicate with each other 
using other methods, such as lasers or acoustic 
waves.

• Copilot MIKE: An Autonomous Assistant for Multi-Robot 
Operations in Cave Exploration.

• One Operator to Rule Them All: Human-Robot Interaction for 
Real-World and Analog Subsurface Exploration.

• Supervised Autonomy for Communication-degraded 
Subterranean Exploration by a Robot Team.

Rovers 
autonomy

https://www.techbriefs.com/component/content/article/tb/pub/briefs/information-sciences/3251ons/20080048021/downloads/20080048021.pdf
https://journals.sagepub.com/doi/full/10.5772/5766
https://ai.jpl.nasa.gov/public/projects/casper/
https://ai.jpl.nasa.gov/public/projects/cave-rovers/


Data for training AI models to 
enable underwater autonomy
Recommended by PreScouter SMEs



AI and ML algorithms require large amounts of data to train. This 
data can be expensive and time-consuming to collect, label, and 
annotate. Additionally, the data may be noisy or biased, which 
can affect the accuracy and reliability of the models.

However, open source data centers are using AI to process 
information relevant for ML for Autonomous Underwater 
Platforms.

Expert Insight

Dr. Marco Leonardi
Performance Analysis 
Engineer, ARM
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Representative costs for labeling relevant data: Images

At an average labeling speed, 1,000 
images take ~3.75 hours to label. 
For a dataset akin to Parks 
Canada's (47,279 images, 55 
classes), around 21 full 
workdays are needed.

In Katija et al.'s (2022) review of Fathom 
Net, over 2,000 hours (~$165,000) were 
spent annotating about 66,000 images, 
at an average cost of $2.50/image.

Extrapolating this to the 10-100 TBs of data 
required to train autonomous systems, 
the cost can range from $5M-10M 
(assuming 4MB/image).

When assembling training sets, various 
factors affect training label availability per 
class. Labeling speed varies on approach: 

• whole image classification is swift 
(e.g., ~5 seconds/image)

• instance segmentation is slower 
(~13.5 seconds/image)

• panoptic labeling is slowest 
(up to ~20 minutes/image). 1,000 

images 
take ~3.75 
hour

60,000 
images 

over 2,000 
hours

~$165,000
($2.50/image)

4MB 
image 

10-100TBs
data 

$5M-10M 
cost

Constructing labeled datasets 
demands substantial resources, 
especially for detailed annotations. 
This underscores well-annotated 
data's value in advancing 
machine learning research 
and applications. 

https://arxiv.org/abs/2109.14646
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Leveraging SONAR data for autonomy

A rough estimate for SONAR data size might 
be in the range of several gigabytes to tens 
of gigabytes per hour of data collection. For 
instance, high-resolution multibeam sonar 
systems used for seafloor mapping can 
generate large datasets due to their detailed 
imaging capabilities. On the other hand, 
single-beam sonar systems used for 
navigation and obstacle avoidance might 
produce smaller datasets.

ResNet-ACW, a novel network, was 
developed using a diverse dataset of 
SONAR images from various devices like 
sidescan, forward-looking, and 3D 
imaging SONAR. It achieved a remarkable 
95.93% accuracy, yet applying it to real-
world SONAR data faces challenges such 
as turbidity and shadows, affecting 
accuracy for automated processes.

The average data size for sonar data can 
vary significantly depending on factors 
such as:

• the type of sonar system used
• the specific application 
• the duration of the data collection
• the sampling rate. 

A 2022 publication in the Journal of Marine 
Science and Technology highlights some 
of the key issues with leveraging SONAR 
data, namely:

• The number of sonar images is far less 
than that of optical images

• The few-shot training of a deep network 
is more difficult

• The problem of overfitting is more 
prominent

Synthetic-Aperture SONAR (SAS) Sensors 
& Data Storage:

• SAS sensors produce large data (1 GB/hour).
• Storage needs depend on sensor type (e.g., 

side-scan, forward-looking).
• Cameras add to storage requirements.
• AUV's mission can generate ≈ 20 GB 

data/hour of mission.

https://www.mdpi.com/2077-1312/10/12/1820


In the realm of signal processing, there isn't a specific set of 
AI algorithms or tools exclusive to this domain. Instead, 
researchers and developers are actively engaged in the 
application of AI algorithms, particularly those used in 
computer vision, which are being adapted/repurposed for 
use in SONAR-based applications.

Anonymous Interviewed Expert

Expert Insight
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Open source data centers that collect large multi-modal sensor data set for 
mobile robotics research in the marine domain.

Using AI to Process Ocean 
Imagery helps to address 
some of the Labeled data 
problems

Examples

1. Labeled data is scarce for new or
emerging applications, making it
difficult to train accurate and
reliable machine learning models.

2. Labeling data is expensive,
especially for complex or time-
consuming tasks.

3. Quality of labeled data can be
affected by the biases of the
people who label it.

4. It can be difficult to scale up the
labeling process to meet the needs
of large datasets.

IMAGE 
DATA

VIDEO
DATA

SENSOR
DATA

LABELED
DATA
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Additional resources for developing relevant AI algorithms: Image classification

Image Enhancement, Color Correction/Restoration

1. EUVP dataset: Data, Paper, Code. (paired and 
unpaired data; FUnIE-GAN)

2. Underwater imagenet: Data, Paper, Code. 
(paired data; UGAN)

3. UIEBD dataset: Data, Paper, Code. (Water-Net)

4. SQUID dataset: Data, Paper, Code. 
(Underwater-HL)

5. U-45: Data, Paper. (UDAE)

6. RUIE benchmark: Data, Paper. (RUIE-Net)

7. Jamaica port royal: Data, Paper, Code. (Water-
GAN)

8. Virtual periscope: Data, Paper.

9. Color correction: Data.

10. Color restoration: Data, Paper, Code.

11. TURBID data: Data, Paper.

12. OceanDark dataset: Data, Paper.

SISR: Single Image Super-Resolution

1. USR-248: Data, Paper, Code. (for 2x, 4x, and 8x 
training; SRDRM, SRDRM-GAN)

SESR: Simultaneous Enhancement and Super 
Resolution

1. UFO-120: Data, Paper, Code. (for 2x, 3x, and 4x 
SESR and saliency prediction; Deep SESR)

Image Segmentation

1. SUIM: Data, Paper, Code. (SUIM-Net)

2. Coral-Net: Data, Paper, Code. (Coral-Seg)

3. Eilat dataset: Data, Paper.

4. Change detection: Data, Paper.

http://irvlab.cs.umn.edu/resources/euvp-dataset
https://arxiv.org/abs/1903.09766
https://github.com/xahidbuffon/funie-gan
http://irvlab.cs.umn.edu/resources/
https://ieeexplore.ieee.org/document/8460552
https://github.com/cameronfabbri/Underwater-Color-Correction
https://li-chongyi.github.io/proj_benchmark.html
https://arxiv.org/abs/1901.05495
https://github.com/Li-Chongyi/Water-Net_Code
http://csms.haifa.ac.il/profiles/tTreibitz/datasets/ambient_forwardlooking/index.html
https://arxiv.org/abs/1811.01343
https://github.com/danaberman/underwater-hl
https://github.com/IPNUISTlegal/underwater-test-dataset-U45-
https://arxiv.org/abs/1906.06819
https://github.com/dlut-dimt/Realworld-Underwater-Image-Enhancement-RUIE-Benchmark
https://arxiv.org/abs/1901.05320
https://github.com/kskin/data
https://arxiv.org/abs/1702.07392
https://github.com/kskin/WaterGAN/
http://webee.technion.ac.il/~yoav/research/random_distort.html
https://ieeexplore.ieee.org/abstract/document/7448905
https://web.whoi.edu/singh/underwater-imaging/datasets/color-correction/
http://csms.haifa.ac.il/profiles/tTreibitz/datasets/ambient_forwardlooking/index.html
https://arxiv.org/abs/1811.01343
https://github.com/danaberman/underwater-hl
http://amandaduarte.com.br/turbid/
https://ieeexplore.ieee.org/abstract/document/7485524
https://sites.google.com/view/oceandark/home
https://www.mdpi.com/2313-433X/5/10/79
http://irvlab.cs.umn.edu/resources/usr-248-dataset
https://arxiv.org/abs/1909.09437
https://github.com/xahidbuffon/srdrm
http://irvlab.cs.umn.edu/resources/ufo-120-dataset
https://arxiv.org/pdf/2002.01155.pdf
https://github.com/xahidbuffon/Deep-SESR
http://irvlab.cs.umn.edu/resources/suim-dataset
https://arxiv.org/pdf/2004.01241.pdf
https://github.com/xahidbuffon/SUIM-Net
https://coralnet.ucsd.edu/
https://onlinelibrary.wiley.com/doi/full/10.1002/rob.21915
https://github.com/Shathe/CoralSeg
https://sites.google.com/a/unizar.es/semanticseg/
https://www.nature.com/articles/srep23166.pdf
http://underwaterchangedetection.eu/index.html
https://ieeexplore.ieee.org/document/7761129
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Additional resources for developing relevant AI algorithms: Object detection & Classification

General

1. MOUSS data: Data. (CVPR 2018 workshop challenge)
2. MBARI database: Data.
3. HabCam database: Data.
4. OUC-vision: Paper.
5. MARIS project: Data.
6. NOAA data: Data.
7. Aqualoc dataset: Data, Paper. (visual-inertial-

pressure localization)
8. Brackish dataset: Data, Paper.
9. SUN database (underwater scenes): Data.
10. FathomNet (image database): Data.

Human-robot cooperation

1. Diver detection: Data, Paper.
2. Robot tracking by detection: Data, Paper.
3. CADDY diver pose data: Data, Paper.

Coral-reef

1. Moorea corals (UCSD): Data, Paper.
2. Coral-reef Puerto Rico: Data.
3. Coral-Net: Data.

Coral-reef

1. Moorea corals (UCSD): Data, Paper.
2. Coral-reef Puerto Rico: Data.
3. Coral-Net: Data.

Fish

1. WildFish database: Data, Paper.
2. Labeled fishes: Data, Paper.
3. Fish4Knowledge data: Data.
4. Fish database: Data.
5. AQUALIFEIMAGES database: Data.
6. Rockfish: Data.
7. Fish recognition data: Data, Paper.
8. Oceanwide images: Data.
9. Fish detection and tracking: Data, Paper.
10. Fish trajectory detection: Data, Paper.

Trash and marine debris

1. TrashCan: Data, Paper
2. Trash-ICRA19: Data, Paper
3. Deep-sea debris database: Data, Paper.
4. Tiny plastics posing threat to turtles: Data, Paper

https://www.viametoolkit.org/cvpr-2018-workshop-data-challenge/challenge-data-description/
https://www.mbari.org/products/data-repository/
https://habcam.whoi.edu/
https://ieeexplore.ieee.org/abstract/document/8019324
http://rimlab.ce.unipr.it/Maris.html
https://marineresearchpartners.com/nmfs_aiasi/DataSets.html
http://www.lirmm.fr/aqualoc/
https://arxiv.org/abs/1910.14532
https://www.kaggle.com/aalborguniversity/brackish-dataset/data
https://www.researchgate.net/publication/333972548_Detection_of_Marine_Animals_in_a_New_Underwater_Dataset_with_Varying_Visibility
http://groups.csail.mit.edu/vision/SUN/
http://fathomnet.org/fathomnet/#/
http://irvlab.cs.umn.edu/resources
https://ieeexplore.ieee.org/document/8543168
http://www.cim.mcgill.ca/~mrl/
https://ieeexplore.ieee.org/document/8206280
http://caddy-underwater-datasets.ge.issia.cnr.it/CADDY-Underwater-Diver-Pose-Dataset
https://www.mdpi.com/2077-1312/7/1/16
http://vision.ucsd.edu/content/moorea-labeled-corals
https://ieeexplore.ieee.org/abstract/document/6247798
https://web.whoi.edu/singh/underwater-imaging/datasets/coral-reef-puerto-rico/
https://coralnet.ucsd.edu/
http://vision.ucsd.edu/content/moorea-labeled-corals
https://ieeexplore.ieee.org/abstract/document/6247798
https://web.whoi.edu/singh/underwater-imaging/datasets/coral-reef-puerto-rico/
https://coralnet.ucsd.edu/
https://github.com/PeiqinZhuang/WildFish
https://dl.acm.org/citation.cfm?id=3240616
https://swfscdata.nmfs.noaa.gov/labeled-fishes-in-the-wild/
https://ieeexplore.ieee.org/abstract/document/7046815
http://homepages.inf.ed.ac.uk/rbf/Fish4Knowledge/
http://www.fishdb.co.uk/
http://www.aqualifeimages.com/
https://web.whoi.edu/singh/underwater-imaging/datasets/rockfish/
http://groups.inf.ed.ac.uk/f4k/GROUNDTRUTH/RECOG/
https://homepages.inf.ed.ac.uk/rbf/PAPERS/PID2432553.pdf
http://www.oceanwideimages.com/
http://www.perceivelab.com/index-dataset.php?name=Fish_Detection
http://groups.inf.ed.ac.uk/f4k/PAPERS/MTAP-Perla.pdf
http://groups.inf.ed.ac.uk/f4k/GROUNDTRUTH/BEHAVIOR/
http://www.bmva.org/bmvc/2013/Papers/paper0021/paper0021.pdf
https://conservancy.umn.edu/handle/11299/214865
https://arxiv.org/abs/2007.08097
https://conservancy.umn.edu/handle/11299/214366
https://ieeexplore.ieee.org/document/8793975
http://www.godac.jamstec.go.jp/catalog/dsdebris/e/index.html
https://ieeexplore.ieee.org/abstract/document/8793975
https://www.dropbox.com/sh/53jzl8w8smydrdb/AAC_oST5MGxJ2VL-rcoTpxhXa
http://europepmc.org/abstract/med/29475719
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Additional resources for developing relevant AI algorithms: Acoustic, stereo, docking, and 
temperature data

Acoustic Data

1. Five-element acoustic dataset: Data, Paper.

2. DIDSON dataset: Data1, Data2, Data3, Paper. 
(fishery classification and assessment)

3. Spectrogram Analysis: Data, Paper.

4. Caves sonar and vision data: Data, Paper.

Stereo Data

1. Tasmania coral point, Scott reef-25, O'Hara-7: 
Data, Paper.

2. Stereo from Flicker: Data, Paper.

3. CADDY stereo data: Data, Paper.

4. HIMB data for UW StereoNet: Data, Paper. (UW-
StereoNet)

5. SQUID dataset: Data, Paper

Docking Data

1. Underwater Docking Images Dataset(UDID): 
Data, Paper.

Temperature Data

1. Underwater temperature dataset: Data.

All the lists provided include direct links to data 
available and research papers.

http://users.ece.utexas.edu/~bevans/projects/underwater/datasets/
http://users.ece.utexas.edu/~bevans/projects/underwater/datasets/ARLUT_01_doc_01.pdf
https://osf.io/sxek6/
https://osf.io/xy32d/
https://figshare.com/collections/An_Underwater_Observation_Dataset_for_Fish_Classification_and_Fishery_Ecology/4039202
https://www.nature.com/articles/sdata2018190
https://sites.google.com/site/tomalampert/data-sets?authuser=0
https://www.sciencedirect.com/science/article/pii/S0031320312004712
https://cirs.udg.edu/caves-dataset/
https://journals.sagepub.com/doi/pdf/10.1177/0278364917732838
http://marine.acfr.usyd.edu.au/datasets/index.html
https://ieeexplore.ieee.org/abstract/document/5652480
http://webee.technion.ac.il/~yoav/research/flicker.html
https://ieeexplore.ieee.org/abstract/document/6528294
http://caddy-underwater-datasets.ge.issia.cnr.it/
https://www.mdpi.com/2077-1312/7/1/16
https://github.com/kskin/data
https://ieeexplore.ieee.org/abstract/document/8794272
http://csms.haifa.ac.il/profiles/tTreibitz/datasets/ambient_forwardlooking/index.html
https://arxiv.org/abs/1811.01343
http://vision.is.tohoku.ac.jp/~liushuang/a-vision-based-underwater-docking-system/dataset/
https://arxiv.org/abs/1712.04138
https://www.seanoe.org/data/00510/62120/


RELEVANT DEVELOPMENTS
Highlighting concrete real world examples 
of relevant developments in this space.
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World's top Research Institutes and Top Researchers working in 
the development of Autonomous Underwater Platforms*

MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT)

The University has the Sea Grant-AUV Lab, which focuses 
in the development of multimodal sensor fusion, machine 
vision, and marine datasets. MIT AUV Lab partners with 
Lockheed Martin to enhance EMATT submarine vessel 
through algorithm development and 
the use of biomimetics.

Top MIT Researchers:

Michael Benjamin: Head of the The Computer Science 
and Artificial Intelligence Lab (CSAIL) at MIT. He 
established moos-ivp.org at MIT and 
focuses on autonomous marine vehicle 
algorithms and software development. 

John Leonard: Research interests include navigation and
mapping for autonomous mobile robots, long-term visual
simultaneous localization and mapping in dynamic
settings, and self-driving cars.

UNIVERSITY OF HAIFA (ISRAEL)

The Hatter Department of Marine Technologies develops novel methods
and advanced equipment for applied research of the sea.

The university harbors the MARINE IMAGING LAB (VISEAON).

The research facility is focused on creating cutting-edge optical
imaging technology and advanced computer vision techniques
(i.e., Imaging, Submerged Sensing, Ocean Engineering, Machine Vision,
Computational Photography). The lab developed SeaErra-Vision,
developing intelligent vision solutions for the underwater world.

Top MIT Researchers:

Morel Gropes: Head of the Subsea Lab. The Lab specializes in
developing the state-of-the art technologies for unmanned marine
vehicles in propulsion, manoeuvring and control as well as in Seaway
planing craft motion, autonomous speed control, marine vehicle
modeling, floaters, deep-sea propulsion, pressure vessels.

*According to PreScouter SMEs

https://seagrant.mit.edu/auv-lab/
https://oceanai.mit.edu/mikerb/pmwiki/pmwiki.php?n=Main.HomePage
http://cap.csail.mit.edu/
http://moos-ivp.org/
https://meche.mit.edu/people/faculty/JLEONARD@MIT.EDU
https://www.marinetech.haifa.ac.il/
https://www.viseaon.haifa.ac.il/
https://www.seaerra-vision.com/
https://www.subseaengineering-univ-haifa.com/
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World's top Research Institutes and Top Researchers working in 
the development of Autonomous Underwater Platforms (cont’d.)

CNR ISMAR ISTITUTO DI SCIENZE MARINE (ITALY)

CNR ISMAR is developing and testing cutting-edge marine
technologies, including autonomous underwater vehicles
(AUVs), remotely operated vehicles (ROVs), and other
robotic systems for underwater exploration and data
collection.

Seebyte (UK)

SeeByte offers software solutions for uncrewed maritime
systems. Our open architecture technology provides
enhanced capability, autonomy, and value to maritime
systems and their users. This is key in providing the needed
simulations.

https://www.ismar.cnr.it/en/infrastructures/naval-infrastructures/mobile-autonomous-systems/
https://www.seebyte.com/about-us/about-us/
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Nanophotonics for light detection and ranging technology

LiDAR is a crucial sensor technology for autonomous vehicles, artificially intelligent
robots, and unmanned aerial vehicle reconnaissance.

Novel nanophotonic platforms could overcome the hardware restrictions of existing
LiDAR technologies.

Nanophotonic approaches such as integrated photonic circuits, optical phased
antenna arrays, and metasurfaces have demonstrated exceptional functional beam
manipulation properties.

Metasurfaces are expected to disrupt modern optical technologies and are being
incorporated into commercially viable, fast, ultrathin, and lightweight LiDAR systems.

Lumotive is developing an ultra-compact solid-state LiDAR system using
metasurfaces. The system can scan a 1D frame at 25μs and has a 120° FOV. However,
it only supports 1D scanning and has a relatively low FOV.

Samsung has developed a similar system using metaphotonic SLMs. The system can
scan a wider angle (8°) but has a lower diffraction efficiency (1%). It also consumes
more energy (283 fJµm−2).

Both systems have the potential to be used in LiDAR applications. However, they still
have some limitations that need to be addressed.

A new lidar system that uses just 1 microjoule of pulse energy and
22.4 millimeters of receiver aperture was developed by researchers.
The entire system is 40 centimeters long and 20 centimeters in
diameter, and it can operate up to 1 kilometer underwater (up to
1000 m depth). To improve sensitivity, the researchers incorporated
single-photon detection into their compact underwater Raman lidar
system. Source: Xiamen University.

http://lumotive
https://lumotive.com/
https://www.sait.samsung.co.kr/saithome/mobile/research/metaphotonics.do
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Avoid losing communication systems in unpredictable environments I

Robots need to explore unknown areas in real time and avoid obstacles,
without loosing their communication systems. Within the system robots need
to be able to communicate with each other using other methods, such as
lasers or acoustic waves.

There are two AI-based proposals

COORDINATION STRATEGIES
Dynamic Zonal Relay Algorithm with Sneakernet Relay: Rovers are first
distributed to designated zones along the cave. Each rover takes science data
in its zone and transmits it to the base station. If a rover is no longer operable,
the other rovers redistribute the zones. Rovers can then acquire science data
further into the cave and transfer it out using sneakernet relay.

This algorithm ensures that rovers are able to communicate with each other
and transmit data back to the base station. It is efficient, robust, and adaptable
to changing conditions.

Scout Observation Algorithm: A set of scout rovers with limited science
capability explore the cave using a method such as the Dynamic Zonal Relay
Algorithm to find science targets, which are then visited by a more powerful
science rover. The data collected by the science rover is then relayed out to the
base station using the scout rovers.

Simulation visualization. The combination of uncertain communication and
limited mission duration suggests that accounting for energy when transmitting
data out of cave-like structures would be beneficial to mission success. AI could
be used to develop energy-aware, smart, distributed routing capabilities in a
multi-rover exploration scenario. This would allow rovers to map and explore caves
more efficiently and effectively. Source: NASA Jet Prop Lab.

https://ai.jpl.nasa.gov/public/projects/cave-rovers/
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Avoid losing communication systems in unpredictable environments I (cont’d.)

ENERGY AWARE DATA ROUTING

Energy-Aware Contact Graph Routing: This algorithm extends traditional CGR by
finding paths of minimal energy over a time-varying topology of pre-scheduled
contacts.

These coordination strategies and energy-aware data routing techniques are
applicable across a wide range of caves and underground structures, as well as
unknown target environments in which communication is limited or not available.

NASA has also developed a simulation framework to easily run different
configurations for mission concepts. This framework provides diagnostic output to
evaluate performance, including an interactive visual playback of the scenario,
activity timeline and distribution, paths travelled by the assets, and energy usage
distribution.

This work is an important step towards the development of autonomous multi-rover
systems for cave exploration. The proposed coordination strategies and energy-
aware data routing techniques can help rovers to explore caves more efficiently and
effectively, even in challenging environments with limited communication.

Visualization of rovers exploring a cave. Cave model courtesy of
Tommaso Santagata/Inside the Glacier Project; Rover 3D model, a
notional Space Exploration Vehicle (SEV), from NASA LaRC Advanced
Concepts Lab, AMA Studios. Source: NASA Jet Prop Lab.

https://ai.jpl.nasa.gov/public/projects/cave-rovers/


The Path to Underwater Autonomy by 2030 | 52

Avoid losing communication systems in unpredictable environments II

Due to the communication paradigm associated with operating an underwater
submersible, the vehicle must be able to act autonomously when achieving specific goals.

NASA is focused on performing autonomous science, the localization of features of interest
with limited to no human interaction.

In 2017-2018, an autonomous nested search method for hydrothermal venting was
developed and tested in simulation using a hydrothermal plume dispersion model
developed by Woods Hole Oceanographic Institution.

Researchers have developed a fully autonomous nested search strategy for the
localization of hydrothermal vents on oceanic environments.

This strategy is based on a manual three-phase nested search.

The strategy was tested using a hydrothermal plume dispersion simulation developed by
Woods Hole Oceanographic Institution using FVCOM, an existing ocean circulation model.

The results of the simulation show that the strategy is effective in locating hydrothermal
vents.

This research is important because it could help us to explore ocean worlds more
efficiently and effectively.

By enabling autonomous submersibles to search for hydrothermal vents, this research will
allow us to explore ocean worlds more quickly and without the need for human
intervention.

Simulation visualization. Simulation showing the observed plume
strength during the nested search to locate the hydrothermal vent
at (0,0). The simulated vehicle performs surveys of repeatedly
higher resolution until the vent source is found. Source: NASA Jet
Prop Lab.

https://ai.jpl.nasa.gov/public/projects/ice-covered-oceans/
https://ai.jpl.nasa.gov/public/projects/ice-covered-oceans/


IP LANDSCAPE ANALYSIS 2003-2023
Exploring the IP space of AI/ML/DL for underwater autonomy.
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An analysis of IP applications reveals a robust upward trend, underscoring the rapid surge in 
the development of technologies that support autonomous underwater platforms.

10X

Figure. Relationship between number of patents and corresponding years, highlighting trends in innovation and intellectual property activity.
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The IP landscape encompasses a wide array of applications, including surveillance and unmanned vehicles, 
intricate sensor integration and fusion techniques (acoustic drift and LADAR). Pivotal strategies for 
achieving autonomy rely through advancements of specialized chips and deep neural networks.

The Technology Landscape visualises the layout of the 
technology space, with peaks representing more 
concentrated area of patenting activity and
troughs representing areas of little or no activity - these 
suggest areas of potential opportunity and exploration.

Legend

Patents published in 2023 (42 patents)
Patents published in 2022 (32 patents)
Patents published in 2021 (12 patents)
Patents published in 2020 and before (41 patents)
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NVIDIA has filed the most patents in the past 4 years in the field of autonomous underwater platforms.
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EXPERTSPreScouter Subject Matter Experts (SMEs) interviewed 
to provide insights featured in this Intelligence Brief

This AUV expert is a prominent figure in the field. With extensive
experience in AUV design and operation, they've made significant
advancements, including groundbreaking algorithms for motion
planning and innovative visibility analysis techniques for complex
environments. They're recognized for their insights into marine
robotics and have diverse research interests spanning motion
planning, 3D visibility analysis, navigation, and trajectory planning for
USVs and UUVs, cooperative decision and control, and sensor-based
navigation. Currently, they're spearheading the development of an
advanced AUV navigation system, pushing the boundaries of
underwater technology for commercial and defense applications.

Anonymous SME
Autonomy & Data Science

Dr. Leonardi is an AUV expert with a focus on image
processing and machine learning. He has a keen
interest in AUV automation, deep learning, real-time
systems, A.I, and robotics. He is also the founder of
Exmarte AS, developing human-in-the-loop remote
driving tech for entertainment.

Dr. Marco Leonardi
Performance Analysis Engineer, ARM
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